Combined inhibition of apoptosis and complement improves neural graft survival of embryonic rat and porcine mesencephalon in the rat brain.
نویسندگان
چکیده
To define potential mechanisms of cell death during neural cell transplantation, we investigated the role of intracellular caspase activation in combination with the activation of serum complement. We demonstrated that ventral mesencephalic (VM) cells are susceptible to complement-mediated cell lysis that can be blocked with an anti-C5 complement inhibitor (18A10). We also determined that incubating freshly isolated allogenic VM cells with the caspase inhibitor 1-3-Boc-aspartyl(Ome)-fluoromethyl ketone (BAF), followed by immediate striatal implantation, led to a 2.5-fold increase in tyrosine hydroxylase (TH) cell survival 12 weeks postimplantation (P < 0.05). In contrast, overnight incubation with BAF followed by striatal implantation led to a 2-fold reduction in TH cell survival at 12 weeks (P < 0.05). Using the optimal BAF treatment and complement inhibition, we tested the hypothesis that these treatments would lead to increased cell survival in both allogeneic and xenogeneic transplantation models. We transplanted cell suspensions of (a) rat E14 VM or VM treated with (b) BAF alone, (c) anti-C5, or (d) a combination of BAF and anti-C5. There was a significant increase in the relative number of TH-positive cells in the BAF/anti-C5 group versus control at 12 weeks posttransplantation. Similar results were achieved in a pig to rat xenotransplant paradigm. A neuronal xenograft marker (70-kDa neurofilament) also demonstrated relative increases in graft volume in the BAF/anti-C5 treatment group. These studies indicate that more than one mechanism can mediate cell death during neural cell transplantation and that a combined treatment using caspase and complement inhibition can significantly improve cell survival.
منابع مشابه
Extracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملImprovement of embryonic dopaminergic neurone survival in culture and after grafting into the striatum of hemiparkinsonian rats by CEP-1347.
Transplantation of embryonic nigral tissue ameliorates functional deficiencies in Parkinson's disease (PD). A main constraint of neural grafting is the poor survival of dopaminergic neurones grafted into patients. Studies in rats indicated that many grafted neurones die by apoptosis. CEP-1347 is a mixed-lineage-kinase (MLK) inhibitor with neuroprotective action in several in vitro and in vivo m...
متن کاملP111: Effect of Human Neural Stem Cells on Neural Hyperactivity in Kindeling Rat Models
The excessive electrical activity of neurons is reported in many diseases including: Parkinson's disease, Alzheimer's disease, and Epilepsy. Electrical overactivity in hippocampus accelerates the depletion of neural stem cell (NSC) and impairs the neurogenesis in hippocampus. It is believed that neurogenesis in hippocampus improves the cognitive functions. In this experiment, we use kindled mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental neurology
دوره 177 2 شماره
صفحات -
تاریخ انتشار 2002